## Metadata Definition for EUI

Author: EUI team (compiled by Cis Verbeeck and Emil Kraaikamp)
Version: 1.8
Date: 2023.02.09

## Disclaimer: none of the present content has been discussed \& approved by the EUI consortium. This is merely a draft of pending issues.

The Solar Orbiter-wide metadata are described in SOL-SGS-TN-0009_MetadataStandard_2.4.
The present document provides a description of the EUI-specific metadata on top of the Solar Orbiter ones.

## Filename convention

Following the guidelines in Updated Proposal for Filename Convention (09/12/2014):

- The third field (descriptor) has the following structure:
eui-<telescope><filter>-<producttype>, where <telescope> can be either "fsi", "hrieuv", or "hrilya", <producttype> can be either "image", "image-led", "image-dark", "image-occulter", "image-short", "histogram", "statistics" or "list" (deadpix is an example of a list; note that EUI thumbnails will NOT be sent to the ground), and <filter> is described in the tables below:

| Filter | Description |
| :---: | :---: |
| 174 | For either one of the two possible 174 filters |
| 304 | For either one of the two possible 304 filters |
| blk | For either one of the four possible blocking positions |
| $\# \# \#$ | For any other filter position in between the options above |

Allowed values of <filter> for fsi.

| Filter | Description |
| :---: | :---: |
| 174 | For either one of the two possible 174 filters |
| opn | For the open filter wheel position |
| blk | For the blocking position |
| zer | For the two zero position |
| $\# \# \#$ | For any other filter position in between the options above |

Allowed values of <filter> for hrieuv.

| Filter | Description |
| :---: | :---: |
| 1216 | The HRI Ly-a telescope does not have a filter wheel and only has one wavelength |

Allowed values of <filter> for hrilya.
In the higher level data products (>=L3) one could have data products like "jhelio" or "annotated".

- a raw (LO) EUI/HRI174 image from an imaging sequence operating at 10 Hz that makes use of the free field (see next bullet) could look like
solo_LO_eui-hrieuv174-image_20201108T121230899_V01_F11234.fits
- we may make use of the free format field F to uniquely identify source images: all filenames originating from the same image onboard can be traced back by doing "Is */solo*F11234.fits"


## EUI specific FITS keywords

Unless specified, any keyword that is provided in Level n , will also be provided in all Levels $\mathrm{m}>\mathrm{n}$.
Level 0 and 1 FITS files should be untouched after the depacketizer, so they will be 12 bit DN values 0 4095 (TBC). Level 2 and higher FITS pixel values will be floats (this can include NaN values, but we will avoid those by always filling in missing pix values). If a user wants to know which pixels are bad, he can consult the bad pixel map.

Pixel values in level 2 and higher FITS files will be normalized over time (TBC).
Mechanisms

| Keyword | Example Value | Suggested FITS Comment | Valid Data Range | Value <br> Type | Description | MType | Level |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DOOREXT | 'open' | external (heat shield) door position | 'open', 'closed' | string | external (heat shield) door position | 0 | L1 |
|  |  |  |  |  |  |  |  |
| DOORINT | 'open' | internal <br> (EUI) <br> door <br> position, from housekee ping | ‘open', ‘closed', ‘occulter' (only FSI), 'launch lock' (perhaps) | string | internal (EUI) door position, from housekeepi ng | 0 | L1 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |



## HRI EUV specific

The "FILTER" keyword is an optional Solar Orbiter keyword. Here we list its valid range for HRI EUV.

| Keyword | Example Value | Suggested <br> FITS <br> Comment | Valid Data Range | Value Type | Description | $\begin{aligned} & m \\ & - \\ & T \\ & y \\ & p \end{aligned}$ | Level |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FILTER | 'Aluminium _174_1' | Physical <br> HRI EUV <br> filter that was employed when the image was acquired | 'Zero', <br> 'Aluminium_174_1' <br> 'Blocked', <br> 'Zero_redundant', <br> 'Aluminium_174_2' <br> 'None/open', <br> 'Unknown' | string | Physical HRI EUV filter that was employed when the image was acquired. Note the relationship to FILTPOS, which indicates the exact position of the filter wheel. | O | L1 |


| FILTPOS | 0 |  | 0-199 | Unsigned integer | AFilter position of HRI EUV filter wheel. $0=$ 'zero_1'; <br> 24='Aluminium_174_ <br> 1'; 74='blocked'; 100='zero_2'; <br> 124='Aluminium_174 <br> 2'; 174='none'; <br> 200='undetermined' are the actual filter positions in FILTER keyword. | ○ | L1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FILCPOS | 1 | Commanded Fititerpeniditon ofiter wheel | 0-255 | Unsigned | Filter position of HRI EUV filter wheel. The HRI EUV filter wheel is currently not commanded by science tables, the expected value is 0 . | $\bigcirc$ | - |

HRI Lyman alpha specific

| Keyword | Example <br> Value | Suggested <br> FITS <br> Comment | Valid <br> Data <br> Range | Value <br> Type | Description | M- <br> Type | Level |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LYAIMCP | 1.09940E-05$[$ AA measured <br> MCP current | TBD | real | [A] measured current <br> high voltage Micro <br> Channel Plate HRI <br> Lyman alpha | O | L1 |  |


| LYAVMCP | 600 | [V] measured MCP voltage | TBD | real | [V] measured high voltage Micro Channel Plate HRI Lyman alpha | 0 | L1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LYAVSCR | 4000 | [V] measured MCP+screen voltage | TBD | real | [V] measured high voltage MCP+screen HRI Lyman alpha | 0 | L1 |
| LYACMCP | 600 | [V] commanded MCP voltage | TBD | real | [V] commanded high voltage Micro Channel Plate HRI Lyman alpha | 0 | LO |
| LYACSCR | 4000 | [V] commanded screen voltage | TBD | real | [V] commanded high voltage screen HRI Lyman alpha | O | LO |

## FSI specific

The "FILTER" keyword is an optional Solar Orbiter keyword. Here we list its valid range for FSI.
Technically speaking, the FSI filters are $\mathrm{Al} / \mathrm{Mg} / \mathrm{Al}$ and $\mathrm{Al} / \mathrm{Zr} / \mathrm{Al}$ sandwiches, but Zirconium and Magnesium are good denominations for operations.

| Keyword | Example Value | Suggested <br> FITS <br> Comment | Valid Data Range | Value Type | Description | M <br> - <br>  <br> y <br> $p$ | Leve |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| FILTER | 'Magnesiu m_304_n4 | Physical FSI filter that was employed when the image was acquired | 'Magnesium_304_n4', <br> 'Zirconium_174_n25', <br> 'Magnesium_304_n26', <br> 'Zirconium_174_n13', <br> 'blocked', 'undetermined | string | Physical FSI filter that was employed when the image was acquired. Note the relationship to FILTPOS, which indicates the exact position of the filter | O | L1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FILTPOS | 0 | Filter position of FSI filter wheel | 0-199 | Unsigned integer | Filter position of FSI filter wheel. <br> $0=$ <br> Magnesium_304_n4 <br> $50=$ <br> Zirconium_174_n25 <br> $100=$ <br> Magnesium_304_n26 <br> $150=$ <br> Zirconium_174_n13 <br> 25,75,125,175 = <br> blocked <br> other value = <br> undetermined <br> are the actual filter positions in FILTER keyword. | O | L1 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |



Front End Electronics

| Keyword | Example <br> Value | Suggested <br> FITS <br> Comment | Valid <br> Data <br> Range | Value <br> Type | Description | M- <br> T | Level |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DETGAINL | 0.80 | commanded <br> multiplication <br> factor for the <br> low gain <br> channel | 0 to 16 | real | The detector gain <br> value (factor) that is <br> commanded and <br> sent to the FEE to <br> determine the <br> output level of the | O L1 | Llow gain channel. <br> Onboard calibration <br> maps will depend <br> on this value |


| DETGAINH | 4.67 | commanded multiplication factor for the high gain channel | 0 to 16 | real | The detector gain value (factor) that is commanded and sent to the FEE to determine the output level of the high gain channel. Onboard calibration maps will depend on this value | 0 | L1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GAINCOMB | 'combine d' | commanded low/high gain combination | 'combined', 'both', 'other' | string | The data is thresholded in the FEE to choose either the high or low gain pixel value. <br> Combined: The default (threshold) algorithm for combining low and high gain is applied. Normally corresponds to READOUTM = 4 and DOWNLOAM $=0$. <br> Both: two images are created: one containing the low gain image and one containing the high gain image. Normally corresponds to READOUTM = 2 and DOWNLOAM $=2$. <br> Other: another combination of readout mode (READOUTM) and download mode (DOWNLOAM) is employed. | 0 | L1 |


| READOUTM | 4 | Commanded FEE readout mode | 0-5 | integer | Commanded FEE readout mode. $0=n o$ data stored; $1=$ no data stored, continuous readout; 2=high and low gains stored; 3=high and low gains stored, continuous readout; 4=threshold gain stored; $5=$ threshold gain stored, continuous readout. | 0 | L1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DOWNLOAM | 0 | Commanded FEE download mode | 0-2 | integer | Commanded FEE download mode. 0=data already thresholded; 1=high or low gain (threshold); 2=all memory content. | 0 | L1 |
| GAINTHRE | 3900 | commanded threshold value for high/low gain pixel value | 0 to 2**12-1 | integer | The data is thresholded in the FEE to choose either the high or low gain pixel value: pixel value <= GAINTHRE then we choose HG, else we choose LG. Remark: 0 => LG only , 2**12 => HG only. | 0 | L1 |
| LEDVALUE | 1057 | commanded CEBcontrolled LED current | 0 to 2^12-1 | integer | current shared between the LEDs in LEDSELEC | 0 | L1 |
| LEDSELEC | 7 | commanded <br> CEB- <br> controlled <br> LED <br> selection | 0 to 16 | integer | determines which entrance filter and/or filter wheel LEDs are selected | O | L1 |


| LEDCONTR | '000110' | commanded <br> configuration <br> calibration <br> LED MAIN <br> and LED <br> Red in <br> telescopes <br> FSI, EUV, <br> LYA | string of characters, each one representin g a bit (0/1) | string | calibration LED MAIN and LED Red in telescopes FSI, EUV, LYA | 0 | L1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LEDSTATE |  | LEDCONTR for current telescope | 'all off', 'main on', 'red on' | string | status calibration LED MAIN and LED Red in current telescope | 0 | L1 |

## Detector

The "DETECTOR" keyword is a Solar Orbiter keyword. Here we list its valid values for EUI.

| Keyword | Example Value | Suggested <br> FITS <br> Comment | Valid <br> Data <br> Range | Value Type | Description | MType | Level |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DETECTOR | 'FSI' | Instrument subunit or sensor | $\begin{aligned} & \text { 'FSI', } \\ & \text { 'HRI_EUV', } \\ & \text { 'HRI_LYA' } \end{aligned}$ | string | To specify the subunit/sensor, e.g. 'FSI', 'HRI_EUV', 'HRI_LYA' for EUI, 'VL', 'UV' for Metis, to be defined by instrument teams and used consistently. | O | L1,2 |
| TEMP1DET | 240 | [K] Last measured APS detector temperature before dateavg |  | real | [K] Last measured APS detector temperature before dateavg | 0 | L1 |


| TEMP2DET | 240 | [K] Earliest measured APS detector temperature after dateavg | real | [K] Earliest measured APS detector temperature after date-avg | O | L1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TTEMP1 | $\begin{aligned} & 20201108 T \\ & 121230899 \end{aligned}$ | time correspondin $g$ to TEMP1DET measuremen | $\begin{aligned} & \text { ISO86 } \\ & 01 \mathrm{w} / \mathrm{o} \\ & \mathrm{Z} \end{aligned}$ | time corresponding to TEMP1DET measurement | O | L1 |
| TTEMP2 | $\begin{aligned} & 20201108 \mathrm{~T} \\ & 121256827 \end{aligned}$ | time <br> correspondin g to <br> TEMP2DET <br> measuremen | $\begin{aligned} & \text { ISO86 } \\ & 01 \mathrm{w} / \mathrm{o} \end{aligned}$ Z | time corresponding to TEMP2DET measurement | 0 | L1 |
| TEMPINT | 240 | [K] internal APS detector temperature | real | [K] internal APS detector temperature (requires calibration) | O | L1 |

## CEB pixel preprocessing

| Keyword | Example <br> Value | Suggested <br> FITS <br> Comment | Valid Data <br> Range | Value <br> Type | Description | M- <br> Type | Level |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| GAOFSTAT | 'both' | status of the <br> CEB gain <br> and offset <br> correction | 'none', 'both' | string | status of the <br> CEB gain and <br> offset <br> correction | O | L0 |


| GAINHG | 1024 | global gain correction register in the high gain channel | 0 to 4095 | integer | Each global value is 12 bits positive with a range of 0 to 4095 equating to a gain correction of 0.0000 to 15.996, with a step of 0.0039 per bit | O | L1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GAINLG | 1024 | global gain correction register in the low gain channel | 0 to 4095 | integer | Each global value is 12 bits positive with a range of 0 to 4095 equating to a gain correction of 0.0000 to 15.996, with a step of 0.0039 per bit | O | L1 |
| OFFSETHG | -50 | [DN] global offset correction register in the high gain channel | -128 to 127 | integer | [DN] offset value that is subtracted from incoming pixels that are 8bits with a range of -128 to +127 | O | L1 |
| OFFSETLG | -50 | [DN] global offset correction register in the low gain channel | -128 to 127 | integer | [DN] offset value that is subtracted from incoming pixels that are 8bits with a range of -128 to +127 | O | L1 |
| BADPXREM | 'on' | commanded bad pixel removal on or off | 'on', 'off' | string | This keyword describes the state of the bad pixel removal: either on or off. | O | L1 |


| BADPXDEF | 50 | commanded <br> bad pixel <br> default <br> value | $0-4095$ | unsigne <br> d <br> integer | This keyword <br> describes the <br> bad pixel <br> default value <br> for bad pixel <br> removal <br> (employed for <br> bad pixels on <br> the border of a <br> line). | O | L1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CRREM | 'on' | cosmic ray <br> removal on <br> or off | 'on', 'off' | string | This keyword <br> describes the <br> state of the <br> cosmic ray <br> removal: either <br> on or off | O L1 |  |


| CRREMLIM | 2.00000 | [1 Gaussian <br> sigma (in <br> DN)] Limit <br> for cosmic <br> ray removal | 0 to 16-1/256 | real | A 'range' value is <br> determined by <br> taking from the list <br> of 9 sorted values <br> the 3rd and 7th <br> values and <br> calculating range= <br> (value7- value3)/2. <br> This value is then <br> multiplied by a <br> twelve bit value, <br> programmed by <br> software into a <br> register, and the <br> result is called the <br> 'scaled range <br> value'. The <br> multiplication is <br> fractional where <br> the least significant <br> eight bits give <br> $1 / 256$ increments. <br> The above value <br> provides the <br> number of <br> Gaussian sigmas <br> above which <br> outliers are <br> removed. | L1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Compression

| Keyword | Example <br> Value | Suggested <br> FITS <br> Comment | Valid Data <br> Range | Value <br> Type | Description | M- <br> Type | Lev <br> el |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RECSTATE | 'on' | Recoding on <br> or off? | 'on', 'off' | string | Recoding on <br> or off? | O | L0 |


| RECNRBIT | 8 | Bit depth of the output of the recoding process; number is always 8 ! | 0 to 16; number is always 8 ! | integer | Bit depth of the output of the recoding process; number is always 8 ! | O | L0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RECLOW | 12 | value below which we clip all values to 0 in the recoding process | $\begin{aligned} & 0 \text { to } 32767 \\ & (15 \text { bit) } \end{aligned}$ | integer | value below which we clip all values to 0 in the recoding process. In the decoding process, all 0 values are mapped to RECLOW | O | LO |
| RECHIGH | 31000 | value above which we clip all values to $2^{\wedge}$ RECNRBI $\mathrm{T}-1$ in the recoding process | $\begin{aligned} & 0 \text { to } 32767 \\ & \text { (15 bit) } \end{aligned}$ | integer | value above which we clip all values to $2^{\wedge}$ RECNRBI $\mathrm{T}-1$ in the recoding process. In the decoding process, all $2^{\wedge}$ RECNRBI T-1 values are mapped to RECHIGH | O | L0 |
| COMBITPP | 30 | WICOM bits per pixel in the compressed image | 1 to 250 (correspondin g to 0.04-10 bits per pixel) | integer | WICOM bits per pixel in the compressed image. Note: compression rate $=$ bits per pixel in the input image/ bits per pixel in the compressed image | O | LO |


| COMSTRIP | 'off' | type of the compression : off = whole image compression ; on = strip compression | 'on', 'off' | string | type of the compression: off = whole image compression (like JPEG2000); on = strip compression (older and less efficient) | 0 | L0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COMSPLMD | 'provided by user' | WICOM compression splitb3 mode | 'calculated internally', 'provided by user' | string | WICOM compression splitb3 mode: 0 = calculated internally, 1 = provided by user | 0 | L0 |
| COMSPLVL |  | WICOM compression splitb3 value | 4 bit | integer | WICOM compression splitb3 value | 0 | L0 |
| COMWEIMD | 'on' | WICOM compression weighting mode | 'on', 'off' | string | WICOM compression weighting mode | 0 | L0 |
| COMWEIVL | $\begin{aligned} & ‘ 10,20,30, \\ & 40,50,60, \\ & 70,80,90, \\ & 100 ' \end{aligned}$ | WICOM compression weighting sub-band coefficients 1 to 10 | $\begin{aligned} & \text { ‘0,0,0,0,0,0,0, } \\ & 0,0,0,0 \text { ' to } \\ & \text { '255,255,255, } \\ & 255,255,255, \\ & 255,255,255, \\ & 255 \text { ' } \end{aligned}$ | string of 10 commaseparated decimal numbers 0 255 (no spaces nor tabs after commas) | WICOM compression weighting sub-band coefficients 1 to 10 | 0 | L0 |


| COMSIZE | number of <br> bytes <br> onboard <br> compressed <br> image <br> (including <br> also <br> rebinning, <br> recoding, <br> $\ldots$..) |  | integer | number of <br> bytes <br> onboard <br> compressed <br> image <br> (including <br> also <br> rebinning, <br> recoding, ...) | O | L0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Data routing

| Keyword | Example <br> Value | Suggested FITS Comment | Valid <br> Data <br> Range | Value Type | Description | MType | Level |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRIORITY | 10 | Priority Number of image/histogram when it was downloaded | 0 to 255 | integer | Priority Number of image/histogra m when it was downloaded | 0 | L0 |
| SCITABID |  | "Exposure identifier" in secondary science table |  | integer | "Exposure identifier" in secondary science table (e.g., LL02) | O | L0 |
| SCITABNR | 42 | Sequential number of "Exposure identifier" in secondary science table |  | integer | Sequential number of "Exposure identifier" in secondary science table | 0 | L0 |

## File identification

| Keyword | Example <br> Value | Suggested <br> FITS <br> Comment | Valid Data <br> Range | Value <br> Type | Description | M- <br> Type | Level |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| IMGTYPE | "solar image" | Distinction between solar images and various calibration and engineering images | "solar image", "solar image, short", "dark image", "LED image", "occulted image", "gain image", "offset image" | string | Distinction between solar images and various calibration and engineering images | 0 | L0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JOBID | $\begin{aligned} & \text { 19991231T235 } \\ & \text { 959.789Z_Abx } \end{aligned}$ | Unique pipeline job ID | ISO8601 <br> datetime <br> stamp + '_' + 3 <br> alphanumeric characters | string | Unique pipeline job ID | 0 | L0 |

## Solar Ephemeris

| Keyword | Example <br> Value | Suggested FITS <br> Comment | Valid <br> Data <br> Range | Value <br> Type | Description | M- <br> Type | Level |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RSUN_OBS | 952.567 | [arcsec] Apparent <br> photospheric | Positive | Float | Apparent <br> photospheric <br> solar radius in <br> arc seconds | O | L1 |

WCS
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Keyword } & \begin{array}{l}\text { Example } \\ \text { Value }\end{array} & \begin{array}{l}\text { Suggested FITS } \\ \text { Comment }\end{array} & \begin{array}{l}\text { Valid } \\ \text { Data } \\ \text { Range }\end{array} & \begin{array}{l}\text { Value } \\ \text { Type }\end{array} & \text { Description } & \begin{array}{l}\text { M- } \\ \text { Type }\end{array} & \text { Level } \\ \hline \text { DCRVAL1 } & 104.494 & \begin{array}{l}\text { Float } \\ \text { [arcsec] delta } \\ \text { CRVAL1 }\end{array} & \begin{array}{l}\text { The delta } \\ \text { applied to } \\ \text { CRVAL1 value; } \\ \text { e.g., by limb- }\end{array} & \text { O } & \text { L2 } \\ \text { fitting }\end{array}\right]$

## Derived image properties

| Keyword | Example <br> Value | Suggested FITS <br> Comment | Valid <br> Data <br> Range | Value <br> Type | Description | M- <br> Type | Level |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EUXCEN | 514.290 | [pixel] axis 1 <br> location of solar <br> center in Level 1 | can be <br> outside <br> FOV | Real | [pixel] axis 1 <br> location of solar <br> center in Level 1 | O | L1 |
| EUYCEN | 514.290 | [pixel] axis 2 <br> location of solar <br> center in Level 1 | can be <br> outside <br> FOV | Real | [pixel] axis 2 <br> location of solar <br> center in Level 1 | O | L1 |
| DATAMEAN | 938.27 | [DN] average <br> pixel value across <br> the image | Real | [DN] average <br> pixel value <br> across the image | O | L0 |  |

## General description

| Keyword | Example <br> Value | Suggested FITS <br> Comment | Valid <br> Data <br> Range | Value <br> Type | Description | M- <br> Type | Level |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| COMPLETE | 'C' | 'C': data product <br> based on complete <br> series of telemetry <br> packets; 'I': data <br> product based on <br> incomplete series <br> of telemetry | 'I' | string | Indicates <br> whether the <br> data product <br> comes from a <br> complete <br> series of <br> telemetry <br> packets | O | L0 |

## Telemetry headers

| Keyword | Example Value | Suggested FITS Comment | Valid <br> Data <br> Range | Value Type | Description | $\begin{gathered} \mathrm{m} \\ - \\ \mathrm{T} \\ \mathrm{y} \\ \mathrm{p} \\ \mathrm{e} \end{gathered}$ | Level |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALU | 21178 | CEB ALU reg |  | Unsigned 2 byte integer | CEB ALU reg | 0 | L0 |


| ALU2 | 4 | CEB ALU2 reg | Unsigned 2 byte integer | CEB ALU2 reg | 0 | L0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DETREG20 | 0 | REG20_VDAC_CLIPP | Unsigned 1 byte integer | REG20_VDAC_CLIPP | 0 | L0 |
| DETREG21 | 0 | REG21_VDAC_OFFS ETP | Unsigned 1 byte integer | REG21_VDAC_OFFS ETP | 0 | L0 |
| DETREG22 | 0 | $\underset{\mathrm{F}}{\mathrm{REG22}} \underset{\mathrm{Z}}{\mathrm{VDAC}} \mathrm{CMRE}$ | Unsigned 1 byte integer | REG22_VDAC_CMRE | 0 | L0 |
| DETREG23 | 0 | REG23_VDAC_OFFS ETN | Unsigned 1 byte integer | REG23_VDAC_OFFS ETN | 0 | LO |
| DETREG24 | 0 | REG24_VDAC_CLIPN | Unsigned 1 byte integer | REG24_VDAC_CLIPN | 0 | L0 |
| DETREG25 | 0 | REG25_VDAC_CMRE $F \text { LV }$ | Unsigned 1 byte integer | REG25_VDAC_CMRE F LV | 0 | LO |
| DETREG26 | 0 | $\begin{aligned} & \text { REG26_IDAC_CDSST } \\ & \text { AGE2 } \overline{3} \end{aligned}$ | Unsigned 1 byte integer | $\begin{aligned} & \text { REG26_IDAC_CDSST } \\ & \text { AGE2 } \overline{3} \end{aligned}$ | 0 | L0 |
| DETREG27 | 0 | REG27_IDAC_CDSST AGE1 COMPA | Unsigned 1 byte integer | $\begin{aligned} & \text { REG27_IDAC_CDSST } \\ & \text { AGE1 COMPA } \end{aligned}$ | 0 | L0 |
| DETREG28 | 0 | REG28_IDAC_INVBU FFER REFBU | Unsigned 1 byte integer | REG28_IDAC_INVBU FFER REFBU | 0 | L0 |
| DETREG29 | 0 | REG29_IDAC_COLBU FFER COLBU | Unsigned 1 byte integer | REG29_IDAC_COLBU FFER COLBU | O | L0 |
| DETREG2A | 0 | REG2A_IDAC_COLP C COLGAINST | Unsigned 1 byte integer | REG2A IDAC_COLP c COLGAINST | 0 | L0 |
| DETREG2B | 0 | REG2B IDAC OUTP UTDRIVER CO | Unsigned 1 byte integer | REG2B IDAC OUTP UTDRIVER CO | 0 | L0 |
| DETREG2C | 0 | REG2C_VDAC_BLAC KSUN EVVEN | Unsigned 1 byte integer | REG2C_VDAC_BLAC KSUN EVEN | 0 | L0 |
| DETREG2D | 0 | REG2D_IDAC_ABS_R EBUFF TEMP | Unsigned 1 byte integer | REG2D_IDAC_ABS_R EBUFF TEMP | O | L0 |
| DETREG2E | 0 | REG2E_COLGAIN_E VEN FF MID | Unsigned 1 byte integer | REG2E_COLGAIN_E VEN FF MID | 0 | L0 |
| DETREG2F | 0 | REG2F_COLGAIN_E VEN FF LOW | Unsigned 1 byte integer | REG2F_COLGAIN_E VEN FF LOW | 0 | L0 |


| DETREG30 | 0 | REG30_COLGAIN_EV EN FB MID | Unsigned 1 byte integer | REG30_COLGAIN_EV | O | L0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DETREG31 | 0 | REG31_COLGAIN_EV EN FB LOW | Unsigned 1 byte integer | REG31_COLGAIN_EV <br> EN FB LOW | O | LO |
| DETREG32 | 0 | REG32_COLGAIN_EV EN FB HIGH | Unsigned 1 byte integer | REG32_COLGAIN_EV EN FB HIGH | 0 | L0 |
| DETREG33 | 0 | REG33_COLGAIN_O DD FF | Unsigned 1 byte integer | REG33_COLGAIN_O DD FF MID | O | LO |
| DETREG34 | 0 | $\begin{aligned} & \text { REG34_COLGAIN_O } \\ & \text { DD FF_LOW } \end{aligned}$ | Unsigned 1 byte integer | $\begin{aligned} & \text { REG34_COLGAIN_O } \\ & \text { DD FF_LOW } \end{aligned}$ | 0 | LO |
| DETREG35 | 0 | REG35_COLGAIN_O DD FB MID | Unsigned 1 byte integer | $\begin{aligned} & \text { REG35_COLGAIN_O } \\ & \text { DD FB MID } \end{aligned}$ | 0 | L0 |
| DETREG36 | 0 | REG36_COLGAIN_O DD FB LOW | Unsigned 1 byte integer | REG36_COLGAIN_O DD FB_LOW | 0 | L0 |
| DETREG37 | 0 | REG37_COLGAIN_V DAC SIGCLAM | Unsigned 1 byte integer | REG37_COLGAIN_V <br> DAC SIGCLAM | O | LO |
| DETREG38 | 0 | REG38_CDS_EN_SA MPLE CLOCK | Unsigned 1 byte integer | REG38_CDS_EN_SA MPLE CLOCK | 0 | LO |
| DETREG39 | 0 | REG39_MBS_PIXCOL ADDR LOW | Unsigned 1 byte integer | $\begin{aligned} & \text { REG39_MBS_PIXCOL } \\ & \text { ADDR_LOW } \end{aligned}$ | 0 | L0 |
| DETREG3A | 0 | REG3A_MBS_PIXCO L ADDR HIGH | Unsigned 1 byte integer | $\begin{aligned} & \text { REG3A_MBS_PIXCO } \\ & \text { L ADDR HIGH } \end{aligned}$ | 0 | L0 |
| DETREG3B | 0 | REG3B_MBS_MUXB US SR EOSX S | Unsigned 1 byte integer | REG3B MBS MUXB US SR EOSX S | O | L0 |
| DETREG3C | 0 | REG3C_VDAC_SIGC LAMP BLACK | Unsigned 1 byte integer | REG3C_VDAC_SIGC LAMP BLACK | 0 | L0 |
| DETREG3D | 0 | REG3D_XWIN_ADDR ESS | Unsigned 1 byte integer | REG3D_XWIN_ADDR ESS | 0 | LO |
| DETREG3E | 0 | REG3E_VDAC_BUSC LAMPHIGH | Unsigned 1 byte integer | REG3E_VDAC_BUSC LAMPHIGH | 0 | LO |
| DETREG3F | 0 | REG3F_VDAC_BUSC LAMPLOW | Unsigned 1 byte integer | REG3F_VDAC_BUSC <br> LAMPLOW | 0 | LO |

