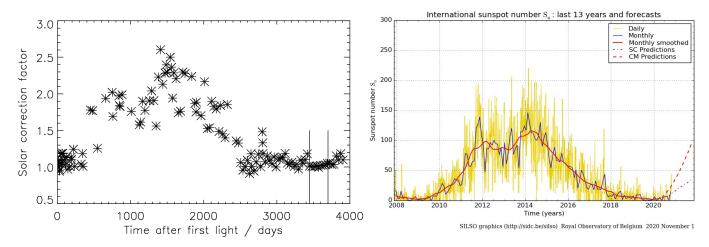
LYRA degradation status after ~ 4000 days

IED 24 Nov 2020

This report is based on an earlier report, some explanation can be found there:

http://solwww.oma.be/users/dammasch/IED_20180223_LyraStatus3000.pdf In addition, this report uses the calibration campaigns performed between Mar 2018 and Sep 2020.


The values are based on the latest update of the dark currents, see here:

http://solwww.oma.be/users/dammasch/IED 20200218 DarkCurrents.pdf

The short-wavelength channels (ch*-3, "Aluminium", and ch*-4, "Zirconium") are corrected for solar activity in order to estimate their degradation:

factor = observed ch1-4 / theoretical ch1-4

This factor is obviously correlated with the sunspot number. Its minimum period, between day #3450 (mid Jun 2019) and day #3700 (mid/end Feb 2020), see vertical bars, is consistent with SILSO's starting point of the new solar cycle in Dec 2019.

Day #1 is in Jan 2010, day #4000 is in Dec 2020. The current estimated degradation status is as follows (values before and after are in counts/ms, percentages describe what is <u>left</u> from the original signal at First Light):

ch1-1	1300.0	->	558.0	43%
ch1-2	613.4	->	296.4	48%
ch1-3	17.2	->	6.3	37%
ch1-4	30.3	->	17.8	59%
ch2-1	492.0	->	(2.5)	<1%
ch2-2	703.5	->	(1.5)	<1%
ch2-3	16.6	->	0.1	<1%
ch2-4	37.5	->	2.9	8%
ch3-1 ch3-2 ch3-3 ch3-4	920.0 545.5 273.6 30.0	-> -> -> -> ->	494.8 4.0 18.7 11.6	54% <1% 7% 39%

Some assumptions:

The channels of unit 1 are still degrading, the channels of unit 1 and unit 3 do not significantly degrade any more.

ch1-1: Steep decline in the first weeks, then practically constant until the week-long flare campaign in Sep 2017 (day #2800). Sudden drop due to this campaign, linear decline afterwards. Details hard to tell because of slow saturation, only long exposures taken into account.

ch1-2: Slow decline at first, diminishing later, with even partial recovery. Sudden drop in Sep 2017, linear decline afterwards.

ch1-3: Linear decline until Sep 2017, sudden drop, slightly faster linear decline afterwards. Details hard to tell because of slow saturation, only long exposures taken into account.

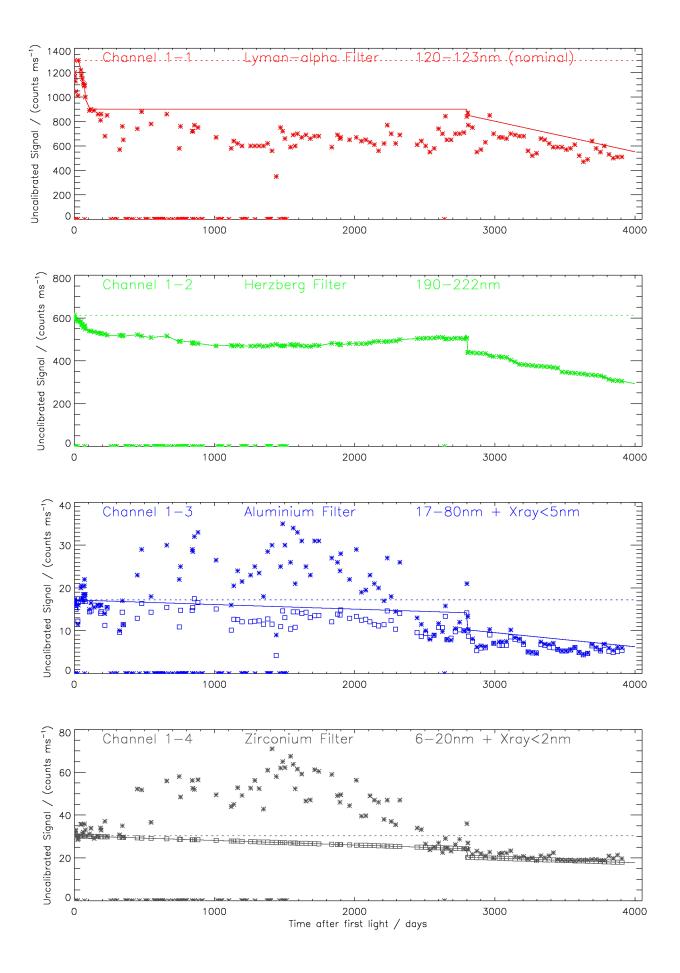
ch1-4: Linear decline until Sep 2017, sudden drop, same linear decline afterwards. This "theoretical" degradation is chosen such that the level of the solar correction factor is ~ 1.0 in begin-2010 as well as in end-2019.

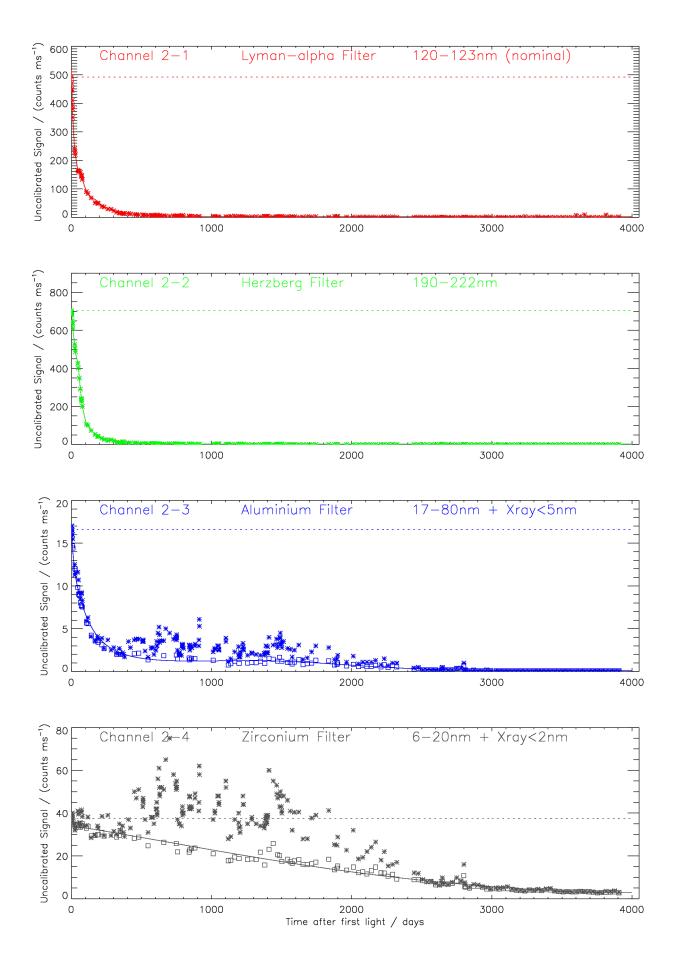
ch2-1: Steep decline in the first weeks, followed by a 5th-order polynomial, until reaching constant "zero" level (set to 2.5) around day #1000 (Oct 2012).

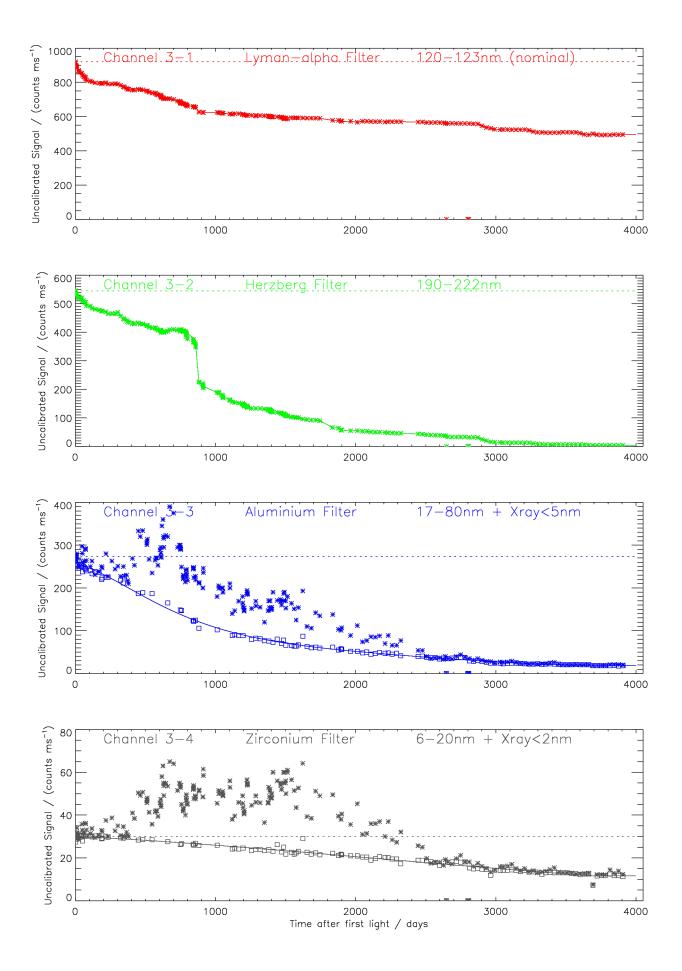
ch2-2: Steep decline in the first weeks, followed by a 5th-order polynomial, until reaching constant "zero" level (set to 1.5) around day #900 (Jun 2012).

ch2-3: Steep decline in the first days, followed by a 5th-order polynomial, until reaching constant "zero" level (0.1) around day #3000 (Mar 2018).

ch2-4: Steep decline in the first days, followed by a 2nd-order polynomial, until reaching constant minimum level above zero (2.9) around day #3700 (Feb 2020).


ch3-1: First faster, then slower decline, until reaching constant minimum level above zero (494.8), probably this high due to infrared influence outside nominal spectral interval, around now.


ch3-2: First faster, then slower decline, interrupted by a steep decline around day #860 (May 2012, due to open window), until reaching constant "zero" level (4.0) around now.


ch3-3: Steep decline in the first days, followed by a 5th-order polynomial, until reaching constant minimum level above zero (18.7) around day #3700 (Feb 2020).

ch3-4: Steep decline in the first days, followed by a 2nd-order polynomial, until reaching constant minimum level above zero (11.6) around day #3700 (Feb 2020).

Whether ch3-3 and especially ch3-4 really stopped degrading now, or just show a compensatory effect of degradation vs. regaining solar activity, has to be confirmed in the future.

