Ingolf E. Dammasch ROB/SIDC Brussels, Belgium

SOHO/SUMER – Results and Lessons learned

EUI Consortium Meeting, Brussels, 26 Apr 2016

SOHO, the Solar and Heliospheric Observatory, studies the Sun 24 hours a day from space

Why from space?

SUMER on Spacecraft

SOHO mission time nominal 1996 – 1998 extended several times SOHO costs approx. 1 000 M Euro (75% ESA, 25% NASA, instruments likewise) in comparison: 1 shuttle start

= approx. 500 M Euro

SOHO Spacecraft

(SOlar and Heliospheric Observatory, ESA/NASA)

Size 4.3 x 2.7 x 3.7 m Solar paddles 9.5 m Start weight 1850 kg Payload 610 kg 12 scientific Instruments (CDS,CELIAS, COSTEP, EIT, ERNE, GOLF,LASCO,MDI, SUMER, SWAN, UVCS, VIRGO)

SOHO Launch

KSC Launch Complex 36 Atlas Centaur Launch Vehicle start 02 Dec 1995 08:08 UTC at L1 14 Feb 1996

Anecdotes: Launch

What can SUMER do? (1)

Full disk scan in He I 58.4 (log radiance)

02 Mar 1996 23:22 UTC – 04 Mar 1996 02:46 UTC

slit 1"x300" step 1.5" time 7 s

Challenges: Calibration

What can SUMER do? (2)

Full disk scan in Ne VIII 77.0 (log radiance)

02 Feb 1996 02:05 UTC – 18:12 UTC

slit 1"x300" step 1.88" time 7.5 s

Solutions: Imager FOV

What can SUMER do? (3)

Full disk scan in Ne VIII 77.0 (Doppler shifts)

02 Feb 1996 02:05 UTC – 18:12 UTC

slit 1"x300" step 1.88" time 7.5 s

SUMER

(Solar Ultraviolet Measurements of Emitted Radiation)

- telescope and spectrometer
- approx. 80 160 nm wavelength range (1st order)
- various slit sizes, variable raster step sizes, exposure times
- 2 detectors with 1024 spectral x 360 spatial pixels (Solutions)
- spatial resolution approx. 1" (715 km on the Sun)
- spectral resolution approx. 0.004 nm (10 km/s and better)

States a -	CHARLES HALF	14 1 % N	ej sv s r	HISKING S	ins deer polorishing	aperstation a
and the set of the of the set of	CALL PRO			a free sinde a sinde and sinde		a free of the line of the line of the
				and a second s	na starte en	

The SUMER Instrument (1)

(Engineering Model, Integration Team in Cleanroom)

designed and built (with international co-operation) at Max-Planck-Institut f. Aeronomie, MPAE (now MPS), Lindau, Germany, 1987-1995

costs approx. 50 M Euro (55% D, 20% F, 20% USA, 5% CH)

The SUMER Instrument (2)

Anatomy of a Coronal Hole (27 Jul 1996 23:16 – 28 Jul 1996 17:21 UTC)

- Fe XII 124.2 nm (1 400 000 K)
- Mg X 62.4 nm (1 100 000 K)
- O V 62.9 nm
 (250 000 K)
- N V 123.8 nm (190 000 K)
- S II 125.0 nm (30 000 K)
- C I 124.9 nm (< 10 000 K)</p>

Anecdotes: Poster

Anatomie eines koronalen Laches

Des tardica nas del Ferrie Indicas de Sant Svellos El ano-Isti was d'alter d'Empirado as (1) Construction of Construction (Construction Construction Construction) (Construction Construction (Construction) (Construction Construction (Construction) (Construction Construction) (Construction) (Construction Construction) (Construction Construction Construction) (Construction) (Co

Transition Region Morphology, Redshift (O VI 103.1 nm, 30 Jan 1996 04:38-04:57 UTC)

Anecdotes: Initial data chaos

Spicules and Macrospicules

(N V 124.2 nm, 27 Apr 1996 20:01 – 28 Apr 1996 01:03 UTC)

Challenges: Loss of SOHO in 1998

Cont 154.0, Si II 153.3, C IV 154.8, Ne VIII 77.0 nm (03 Nov 1999 18:55 – 04 Nov 1999 00:25 UTC)

<10 000 K

100 000 K

Some Results of SUMER Observations

- The source of the fast solar wind in coronal holes
- High red- and blueshifts at explosive events
- Improved rest wavelength values for coronal lines
- Log-normal distribution of line radiances (in QS, not CH, AR)
- Normal distribution of line shifts and widths (in QS ...)
- Interrelation between radiance and redshift (in QS ...), esp. TR
- Redshift in footpoints of active region loops
- Damped oscillations in flare lines
- The "height" of chromosphere, transition region, corona
- Emission measures of various regions

Prominence Observation

(08 Jul 2000 09:04-12:51 UTC)

Meudon H-alpha

SOHO/EIT He II 30.4, TRACE Fe IX/X 17.1, TRACE H I Lyman alpha 121.6 nm

SOHO/SUMER 1"x120" slit 120 s exposure 91-95 nm

Active Region Loops Collaboration with W. Curdt, MPS, Germany; B.N. Dwivedi, India;

S. Parenti, ROB

Ne VIII 78.0 nm, 20 May 2004 16:29-19:33 UTC

Ne VIII 78.0 nm, 21 May 2004 19:10-22:15 UTC

Redshift in Chromosphere and Transition Region

(well known in Quiet Sun)

Si II 153.3 nm, 07 Nov 1999 00:05-10:08 UTC

Doppler Shift vs. Brightness

Straightforward interrelation for chromosphere and transition region in Quiet Sun.

More complicated in the corona and especially in Active Regions.

Must stop here ...

- despite enthusiasm for spectroscopy.
- Now, what are the lessons learned for future projects?
- (Not all may be applicable for imagers.)
- Anecdotes: Search for info on EUI website

Lessons learned

- Inspect the launch vehicle ;-)
- Start early with on-ground calibration, then continue in space
- Get a bigger FOV than your competitors ;-)
- Care for an expensive cleanliness program
- alternatively(?): Get out of the Earth's atmosphere
- alternatively(?): Have some back-ups
- Try to point the instrument without moving the spacecraft
- Don't forget PR ("reach out")
- Have your software, catalogues etc. ready before launch
- Don't mess with gyros, get your tele-commands foolproof ;-)
- It really helps to have a website for communication